## Pi Essay

Because of the popularity of both the movie and the book, many students are opting to write a Life of Pie essay. If you have decided to write an essay on this novel, you may be drawn to the symbolism, the compelling characters (human and animal), or the evocative plot that Yann Martel so deftly employs in this book. Unfortunately, one of the most difficult tasks can be thinking of Life of Pi essay topics that are both interesting and original. Clearly, your instructor has read dozens of Life of Pi essays. What you need to do is make your paper unique and original. Take a moment to consider your current Life of Pi essay questions. Are you truly happy with the options you have right now? If you would like a few additional writing prompts and essay questions, we are happy to provide you with a list of potential topics. We hope you enjoy reading our suggestions!

- The main character, Piscine Molitor Patel, is deeply spiritual. His faith is extremely important to him. Write a Life of Pi religion essay, exploring the role that spirituality played in Pi's two stories.
- Search online for Life of Pi essay examples. What are some of the common themes you are seeing? Consider writing a reaction paper to one of these papers.
- The relationship between Pi and Richard Parker is probably the most notable of the book. This relationship would be a great subject of a Life of Pi analysis essay.
- Is the central theme of Life of Pi spirituality, or is the central theme survival? Pick which one stands out to you, and write a Life of Pi theme essay.
- Martel uses the literary element of symbolism frequently in this novel. In fact, even the names of the characters have special meanings behind them. Select five examples of symbolism that you believe make this story more interesting to read. Include these in a Life of Pi symbolism essay.
- Using the rules of writing a descriptive essay, compose a Life of Pi survival essay. Detail all of the ways in which Pi had to fight to survive, spiritually, emotionally, and physically. The ultimate survival is immortality. Did Pi achieve the ultimate survival? Why or why not?
- How would you convince a person who was completely unfamiliar with this book to read it? Would you tell them about the characters, or would you focus on the plot. Write a Life of Pi introduction essay that will make your reading audience want to buy a copy of the book for themselves.
- Write a character analysis of the cook. Does he have any redeeming qualities? Has the author portrayed him as so cowardly, depraved, and evil that he is essentially a two dimensional character? Do you think the author uses this character to portray Satan, or Judas?

Did you find these suggestions helpful? We hope you did. At TrustMyPaper.com, our goal is to help you with all of your writing needs. We are happy to provide this help through our blogs, or our paper writing services. Please visit TrustMyPaper.com for more paper writing tips, or to place an order for an essay or research paper.

Tagged in:essay writingessay servicepaper writing tipsessay topics

This article is about Pi. For other uses, see Pi (disambiguation).

**Pi** (or **π**) is a mathematical constant. It is the ratio of the distance around a **circle** to the circle's **diameter**. This produces a number, and that number is always the same. However, the number is rather strange. The number starts 3.141592....... and continues without end. Numbers like this are called irrational numbers.

The diameter is the longest straight line which can be fitted inside a circle. It passes through the center of the circle. The distance around a circle is known as the circumference. Even though the diameter and circumference are different for different circles, the number pi remains constant: its value never changes. This is because the relationship between the circumference and diameter is always the same.^{[1]}

## Approximation[change | change source]

Pi is often written formally as or the Greek letter **π** as a shortcut. Pi is also an irrational number, meaning it cannot be written as a fraction (), where 'a' and 'b' are integers (whole numbers). This basically means that the digits of pi that are to the right of the decimal go forever without repeating in a pattern, and that it is impossible to write the exact value of pi as a number. Pi can only be approximated, or measured to a value that is close enough for practical purposes.^{[2]}

A value close to pi is 3.141592653589793238462643...^{[3]} A common fraction approximation of pi is , which yields approximately 3.14285714. This approximation is 0.04% away from the true value of pi. While this approximation is accepted for most of its use in real life, the fraction is more accurate (giving about 3.14159292), and can be used when a value closer to pi is needed.^{[4]}Computers can be used to get better approximations of pi.

## History[change | change source]

The value of pi was known to Ancient Indian mathematicians like Bhaskaracharya and Aryabhatt.

Mathematicians have known about pi for thousands of years because they have been working with circles for the same amount of time. Civilizations as old as the Babylonians have been able to approximate pi to many digits, such as the fraction 25/8 and 256/81. Most historians believe that ancient Egyptians had no concept of π and that the correspondence is a coincidence.^{[5]}

The first written reference to pi dates to 1900 BC.^{[6]} Around 1650 BC the Egyptian Ahmes gave a value in the *Rhind Papyrus*. The Babylonians were able to find that the value of pi was slightly greater than 3 by simply making a big circle and then sticking a piece of rope onto the circumference and the diameter, taking note of their distances, and then dividing the circumference by the diameter.

Knowledge of the number pi passed back into Europe and into the hands of the Hebrews, who made the number important in a section of the Bible called the Old Testament. After this, the most common way of trying to find pi was to draw a shape of many sides inside any circle and use the area of the shape to find pi. The Greek philosopher Archimedes, for example, used a polygon shape that had 96 sides in order to find the value of pi, but the Chinese in 500 A.D. were able to use a polygon with 16,384 sides to find the value of pi. The Greeks, like Anaxagoras of Clazomenae, were also busy with finding out other properties of the circle, such as how to make squares of circles and squaring the number pi. Since then, many people have been trying to find out more and more exact values of pi.^{[7]}

Philosopher | Date | Approximation |
---|---|---|

Ptolemy | around 150 A.D. | 3.1416 |

Zu Chongzhi | 430-501 AD | 3.1415929203 |

al-Khwarizmi | around 800 A.D. | 3.1416 |

al-Kashi | around 1430 A.D. | 3.14159265358979 |

Viète | 1540–1603 | 3.141592654 |

Roomen | 1561–1615 | 3.14159265358979323 |

Van Ceulen | around 1600 A.D. | 3.14159265358979323846264338327950288 |

In the 16th century, better and better ways of finding pi became available such as the complicated formula that the French lawyer François Viète developed. The first use of the Greek symbol "π" was in an essay written in 1706 by William Jones.

A mathematician named Lambert also showed in 1761 that the number pi was irrational; that is, it cannot be written as a fraction by normal standards. Another mathematician named Lindeman was also able to show in 1882 that pi was part of the group of numbers known as transcendentals, which are numbers that cannot be the solution to a polynomial equation.^{[8]}

Pi can also be used for figuring out many other things beside circles.^{[5]} The properties of pi have allowed it to be used in many other areas of math besides geometry, which studies shapes. Some of these areas are complex analysis, trigonometry, and series.

## Pi in real life[change | change source]

Today, there are different ways to calculate many digits of . This is of limited use though.

Pi can sometimes be used to work out the area or the circumference of any circle. To find the circumference of a circle, use the formula C (circumference) = π times diameter. To find the area of a circle, use the formula π (radius²). This formula is sometimes written as , where *r* is the variable for the radius of any circle and *A* is the variable for the area of that circle.

To calculate the circumference of a circle with an error of 1 mm:

- 4 digits are needed for a radius of 30 meters
- 10 digits for a radius equal to that of the earth
- 15 digits for a radius equal to the distance from the earth to the sun.

People generally celebrate March 14 as Pi Day because March 14 is also written as 3/14, which represents the first three numbers 3.14 in the approximation of pi.^{[2]}

## Related pages[change | change source]

## References[change | change source]

**pi**is equal to the circumference divided by the diameter).

## Leave a Comment

(0 Comments)